Web services UML modeling
Part II: Web services behavioral modeling

1st step: Model the system using UML.
2nd step: Annotate performance characteristics using the SPT Profile.
3rd step: Translate the UML-SPT diagrams into Petri nets.
4th step: Analyze the Petri nets to obtain performance results.
UML diagrams in our proposal

- UML use cases
- UML sequence diagram
- UML statecharts
- UML activity diagrams
- UML deployment diagram
- Version UML 1.4
The evolution of UML (from Bran Selic’s WOSP 2002 Tutorial)

UML 1.1 (OMG Standard)
- Rumbaugh
- Booch
- Jacobson
- Foundations of OO (Meyer, Stroustrup, Harel, Wirfs-Brock, Reenskaug,...)

UML 1.3 (extensibility)
- 1998

UML 1.4 (action semantics)
- 1997

UML 1.4.1
- 2001

UML 2.0 (MDA)
- 2002
- 2003-2004
Case study: POP3 protocol

- UML models of a basic mail client.
- Classes: server host, client host and user.
- Check mail feature:
 - Client establish TCP connection with the server.
 - Authorization phase (username and password).
 - Transaction phase (LIST command): download mails (text and with attach).
 - QUIT ends the interaction.
Use case diagram

- Scenario modeling technique. Introduced by Jacobson.
- A scenario models how a system behaves (works), not how to implement it.
- Each scenario is described with a sequence of actions.
- A means to understand the system: developers, final users and domain experts.
- **Elements**: actors, ellipses and relationships.
Use case diagram: Relationships

- **Communication.**
- **Generalization.**
- **Inclusion.**
 - The *base* use case **explicitly** incorporates the behavior of the *provider* use case.
- **Extension.**
 - The *base* use case **implicitly** incorporates the behavior of the *provider* use case.
 - Optional behavior.
Sequence diagram

- A SD models a “system interaction” as a set of messages exchanged among classes.
- Vertical dimension: Time; Horizontal dimension: Classes

Our proposal:
- Describe a use case.
- Useful to compute Response Time.
- Objects can reside in the same machine or in different ones.
 - Transmission time.
 - Message size.
- Probabilities as routing rates.
Sequence diagram (2)

- Check mail use case.
Clinical Decision Support System (CDSS) seq. diagram.
Electronic Patient Record (EPR).
Statechart diagram

- Model a class of the problem domain.
- Event-driven behavior: Reactive objects.
- Statechart basic modeling elements:
 - Initial pseudo-state.
 - Final state.
 - Simple state.
 - Transitions: event/class.event.
 - Activities in states.
- KEY: Communication among SC via events.
- KEY: Consistency with the SD.

User statechart.

- psClient
 - /CH.check_mail
 - UserMainState
 - DO: Thinking
 - /CH.exit_exec
- fsClient
Statechart diagram (2)

Client Host statechart.

- **psMClient**
 - check_mail
 - exit_exec

- **fsMClient**
 - text_message
 - attach_message

Waiting4Entry
- entry: SH.open_tcp_connection

Authentication
- entry: SH.username

Quit
- entry: SH.quit

CheckPassword
- entry: SH.password

RetrieveMessage
- entry: SH.retr

DeleteMessage
- entry: SH.dele

Greetings
- ok
- not new

CheckMessages
- ok
- new

Greeting
- ok
- messages_left
- not messages_left

Retrieving
- ok
- not new

Quit
- err
- ok
- not ok
Statechart diagram (3)

Server Host statechart.

- psPOP3Server
 - open_tcp_connection
 - / CH.greeting
 - Listening on TCP port 110
 - / CH.ok
 - Authorization
 - DO: Authorization
 - / CH.ok
 - Transaction
 - dele / CH.ok
 - / CH.text-_message
 - / CH.attach-_message
 - Sending
 - DO: read_message
 - / CH.ok
 - retr

DO:
- Authorization
- unlock_maildrop
- read_message
Detailed description of a statechart behavior: Execution model.

Statechart diagram (4)
Activity diagram

What happens with the *authorization activity* in the SH statechart?
Model it in great detail to get an accurate view of the problem.
Activity diagram is commonly used to *workflow* modeling → not in our approach.
We use the AD to *model activities in SCs*.

Special case of statechart, where:

- Most of the transitions are fired when the action/activity in the state ends → *no reactive behaviour*.
- Most of the states are action states.
- Automated transition firing.
Activity diagram (2)
Activity diagram (3)

- **Action states**
 - No time spent in computation.

- **Activity state**
 - Spent computation or waiting time.
 - Can be decomposed in others → may modeled with another AD
 - With entry and/or exit.

- **Transition**
 - Automatic firing

- **Bifurcations**
 - Alternative paths.

- **Object flow**
 - Objects involved in the diagram (create, destruct or modify).
Activity diagram (4)

Fork and Join

- Concurrent paths
- Join: each path waits until completions of all of them

Figura 19.6. División y unión.
Activity diagram (5)

Swimlanes

Pasajero

- Solicitar pasaje
- Selecionar vuelo
- Pagar pasaje

Vendedor

- Verificar existencia vuelo
- Informar alternativas y precios
- Solicitar pago
- Reservar plazas

Línea Aerea

- Dar detalles vuelo
- Confirmar plaza reservada

Dr. José Merseguer
Dpt. Informática e Ing. Sistemas (Univ. Zaragoza)
Deployment diagram

- Model the deployment of the software components in the hardware platform.
- Software component: configuration files, programs, tables in a DB, operating system, …
- Nodes: represent the hardware resources (CPUs, disks, printers, LAN, Internet, …)

Diagram:

- Name
- Service-1
- Service-2

Component

Nodo
Deployment diagram: Relationships

Dependency

Component-1

Component-2

Communication

Nodo <<Internet>> Nodo
Deployment diagram

POP3 deployment.

Deployment diagram:

- :clientHost
 - m:mailClient
 - :Internet

- :serverHost
 - s:ServerHost

Dr. José Merseguer
Dpt. Informática e Ing. Sistemas (Univ. Zaragoza)